interp_decomp(A, eps_or_k, rand=True)
An ID of a matrix A is a factorization defined by a rank k, a column index array idx, and interpolation coefficients proj such that
numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]
The original matrix can then be reconstructed as
numpy.hstack([A[:,idx[:k]],
numpy.dot(A[:,idx[:k]], proj)]
)[:,numpy.argsort(idx)]
or via the routine reconstruct_matrix_from_id
. This can equivalently be written as
numpy.dot(A[:,idx[:k]],
numpy.hstack([numpy.eye(k), proj])
)[:,np.argsort(idx)]
in terms of the skeleton and interpolation matrices
B = A[:,idx[:k]]
and
P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]
respectively. See also reconstruct_interp_matrix
and reconstruct_skel_matrix
.
The ID can be computed to any relative precision or rank (depending on the value of eps_or_k). If a precision is specified (eps_or_k < 1), then this function has the output signature
k, idx, proj = interp_decomp(A, eps_or_k)
Otherwise, if a rank is specified (eps_or_k >= 1), then the output signature is
idx, proj = interp_decomp(A, eps_or_k)
Matrix to be factored
Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
Rank required to achieve specified relative precision if eps_or_k < 1.
Column index array.
Interpolation coefficients.
Compute ID of a matrix.
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them