scipy 1.10.1 Pypi GitHub Homepage
Other Docs

Interpolative matrix decomposition (:mod:`scipy.linalg.interpolative`)



            <Unimplemented 'footnote' '.. [1] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. "ID: a\n    software package for low-rank approximation of matrices via interpolative\n    decompositions, version 0.2."'>
            <Unimplemented 'footnote' '.. [2] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. "On the\n    compression of low rank matrices." *SIAM J. Sci. Comput.* 26 (4): 1389--1404,\n    2005. :doi:`10.1137/030602678`.'>
            <Unimplemented 'footnote' '.. [3] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M.\n    Tygert. "Randomized algorithms for the low-rank approximation of matrices."\n    *Proc. Natl. Acad. Sci. U.S.A.* 104 (51): 20167--20172, 2007.\n    :doi:`10.1073/pnas.0709640104`.'>
            <Unimplemented 'footnote' '.. [4] P.G. Martinsson, V. Rokhlin, M. Tygert. "A randomized\n    algorithm for the decomposition of matrices." *Appl. Comput. Harmon. Anal.* 30\n    (1): 47--68,  2011. :doi:`10.1016/j.acha.2010.02.003`.'>
            <Unimplemented 'footnote' '.. [5] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. "A fast\n    randomized algorithm for the approximation of matrices." *Appl. Comput.\n    Harmon. Anal.* 25 (3): 335--366, 2008. :doi:`10.1016/j.acha.2007.12.002`.'>



Computing an ID

From matrix entries

From matrix action

Reconstructing an ID

Computing an SVD

From matrix entries

From matrix action

Utility routines



See :

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them

GitHub : /scipy/linalg/
type: <class 'module'>