Loading [MathJax]/jax/input/TeX/config.js
scipy 1.10.1 Pypi GitHub Homepage
Other Docs

NotesParametersReturns
chebyu(n, monic=False)

Defined to be the solution of

(1 - x^2)\frac{d^2}{dx^2}U_n - 3x\frac{d}{dx}U_n + n(n + 2)U_n = 0;

U_n is a polynomial of degree n.

Notes

The polynomials U_n are orthogonal over [-1, 1] with weight function (1 - x^2)^{1/2}.

Parameters

n : int

Degree of the polynomial.

monic : bool, optional

If True, scale the leading coefficient to be 1. Default is False.

Returns

U : orthopoly1d

Chebyshev polynomial of the second kind.

Chebyshev polynomial of the second kind.

See Also

chebyt

Chebyshev polynomial of the first kind.

Examples

Chebyshev polynomials of the second kind of order :math:`n` can be obtained as the determinant of specific :math:`n \times n` matrices. As an example we can check how the points obtained from the determinant of the following :math:`3 \times 3` matrix lay exacty on :math:`U_3`:
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import det
from scipy.special import chebyu
x = np.arange(-1.0, 1.0, 0.01)
fig, ax = plt.subplots()
ax.set_ylim(-2.0, 2.0)
ax.set_title(r'Chebyshev polynomial $U_3$')
ax.plot(x, chebyu(3)(x), label=rf'$U_3$')
for p in np.arange(-1.0, 1.0, 0.1):
    ax.plot(p,
            det(np.array([[2*p, 1, 0], [1, 2*p, 1], [0, 1, 2*p]])),
            'rx')
plt.legend(loc='best')
plt.show()
They satisfy the recurrence relation:
.. math:: U_{2n-1}(x) = 2 T_n(x)U_{n-1}(x)
where the :math:`T_n` are the Chebyshev polynomial of the first kind. Let's verify it for :math:`n = 2`:
from scipy.special import chebyt
x = np.arange(-1.0, 1.0, 0.01)
np.allclose(chebyu(3)(x), 2 * chebyt(2)(x) * chebyu(1)(x))
We can plot the Chebyshev polynomials :math:`U_n` for some values of :math:`n`:
x = np.arange(-1.0, 1.0, 0.01)
fig, ax = plt.subplots()
ax.set_ylim(-1.5, 1.5)
ax.set_title(r'Chebyshev polynomials $U_n$')
for n in np.arange(1,5):
    ax.plot(x, chebyu(n)(x), label=rf'$U_n={n}$')
plt.legend(loc='best')
plt.show()
See :

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

chebytchebyt

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/special/_orthogonal.py#1810
type: <class 'function'>
Commit: